Learning Task
Decomposition to
Assist Humans in

of LM-generated programs

@ R Initial Solution 0
® ® def main(): .
‘ Ompet’t’ve if a[@] == a[l] == @ or any(a[i] == a[i - 1] and a[i - 2] + 1 >= a[i] for i in range(2, n)):
return 'yes’
else:
P L return 'yes' if sum(a) % 2 == sum(range(n)) % 2 else 'no'’ J
Programming f
def is same parity(n, a): '

return sum(a) % 2 == sum(range(n)) % 2

def main():

if a[@] == a[1l] == @ or any(a[i] == a[i - 1] and a[i -

Jiaxin Wen, Ruiqi Zhong,
Pei Ke, Zhihong Shao, &

return 'yes'
else:
return 'yes' if is same parity(n, a) else 'no’

2] + 1 >= a[i] for i in range(2, n)

&
X

S

Decomposed Solution B

Honging Wang, Minlie Huang (9 Suc Mehpiimia).

return a[@] == a[l1l] == 0

def check same piles(a):

return any(a[i] == a[i - 1] and a[i - 2] + 1 >= a[i] for 1 in range(2, n))

Background

While LMs are being used to
solve increasingly complex

def is_same parity(n, a):
return sum(a) % 2 == sum(range(n)) % 2

def main():
if check _zero_piles(a) or check same piles(n, a):
return 'yes'
else:
return 'yes' if is_same parity(n, a) else 'no’

&
&
&
X

tasks, LMs might fail to provide
reliable solutions.

However, humans also struggle
to understand and repair LMs’
solutions due to the required

. . Assisting Experts
time and expertise. 5 HXP

Task

We aim to assist non-expert
humans to solve competitive
programming problems faster
and better, matching the
performance of expert humans.

To this end, we use LMs to
generate decomposed subtasks
and sub-solutions that are
easier to understand and

fix by humans.

Take a picture to
download the full paper

Human Repair

f

Problem

Code Editor

o>
def is same parity(n, a):

return sum(a) ¥ 2 == sum(range(n)) % 2

def main():
if a[@] == a[1l] == @ or any(a[i] == zfi
ali - 1] and af[i - 2] + 1 >= a[i] for i
in range(2, n))
return 'yes'

else:

return 'yes' if is_same_parity(n,
a) else 'no’

Custom Test

Input :

Output :

Submit Button End Button

Assisting Non-experts

Experts v

[
VamittatM

assistance
Heuristic

assistance

Assistive Value: Mid

We measure and optimize the ASSiSti\Ie value

G‘ takes me 35 minutes to

The if-statement is overly

complex and should be further
Qccomposcd.

pass 50% hidden unit tests.

~

.

Assisted non-experts can solve 33.3% more code
challenges, work 3.3x faster, and match unassisted experts

s. Non-experts

Assistive Value (AssistV)

of a Program

Can it assist humans to quickly
obtain a correct program, even
when the program itself is wrong?

Method

 (Collect AssistV labels on
various code decompositions

 Learn to generate high-AssistV
code decompositions by
critiquing, refining, and ranking.

Takeaways

1. A novel objective for scalable
oversight: Assistive Value.
 We explore AssistV in
programming.
* Future work can extend
AssistV to other domains
(e.g., QA, Summarization)

2. Learning-based scalable
oversight is promising.

* LMs can learn to better assist
humans in solving problems
beyond their capabilities.

« LMs’ assistance performance
scales with their capabilities,
sometimes even outperforming
human baselines.





